Разработка урока по теории вероятности "Классическое определение вероятности"

Новая педагогика » Разработка урока по теории вероятности "Классическое определение вероятности"

Страница 2

Вероятностью события называется отношение числа благоприятствующих этому событию исходов к общему числу равновозможных исходов.

Другими словами если мы кидаем одну игральную кость, то шанс выпада четверки будет 1/6.

Где 1 - число благоприятствующих событий (четверка ведь в кости одна), а 6 - общее число исходов (всего 6 сторон у игральной кости).

Так же вероятность представляется в виде:

1. Простой дроби: 1/6

2. Десятичной дроби: 0.1666666(6)

3. Процентах 16.66%

А как подсчитать вероятность случайного события? Ведь оно произошло случайно, значит, не подчиняется закономерностям. Оказывается, и в мире случайного действуют определенные законы.

Этим занимается раздел математики, который называется "теорией вероятностей".

Возьмите в руки кубики. При бросании кубика сколько различных элементарных событий может произойти? (6)

Сколько событий благоприятных событию "выпадет 4"? (1)

Сформулируем правило:

1. Число всех возможных исходов –n

2. Все исходы равновозможны

3. Количество благоприятных исходов – m

4. P(A) – вероятность события А

P(A) =

теория вероятность событие случайный достоверный

Слово вероятность по-французски - probabilite, по-английски – probability.

Учащимся предлагается по учебнику прочитать правило вычисления вероятностей.

Первичное закрепление изученного.

Событием называется результаты опытов, испытаний или наблюдений.

Задача: исследовать виды событий. Для этого:

1. Приведите примеры событий.

Пользуясь образцом: играется шахматная партия – испытание. Выигрыш, ничья, проигрыш его возможные исходы события.

У больного определили 1-ую группу крови. Проверка группы крови – испытание, 1-я группа крови событие.

2. Какие бывают события?

Достоверное – если оно обязательно произойдет, например, в ящике 10 белых шаров, то событие извлеченный шар – белый – достоверное.

Невозможное - если оно заведомо не может произойти в данном испытании, например, в ящике 10 белых шаров, то событие вытащить черный шар - невозможное.

Случайное событие – которое в данном испытании может произойти, а может и не произойти, например, если при бросании монеты событие – выпал герб - случайное. Попробуйте придумать свои примеры и оформить все, что вы узнали в виде схемы.

Справка: Событие называют случайным, если оно может произойти, а может и не произойти.

Выполните следующие испытания:

1) Подбросьте монету 50 раз. Посчитайте сколько раз

а) выпадет орел.

б) Подбросьте монету 20 раз. Посчитайте сколько раз выпал орел.

в) Как сравнить результаты?

Может вы приведете свои примеры?

На учениях по стрельбе из винтовки стрелок попадал 8 раз из 10 выстрелов.

Какова частота поражения цели у этого спортсмена и сколько попаданий в цель можно ожидать от него на соревнованиях, если каждый участник будет стрелять 30 раз?

Возможные исходы испытаний можно найти путем правдоподобных рассуждений основанных на практическом опыте и здравом смысле.

Пример: Возьмем игральный кубик, то при бросании этого кубика каковы шансы выпадения на его верхней грани 1, 2, 3, 4, 5, 6 очков (одинаковы, т.к. нет оснований считать, что выпадение одного из очков, например 6 более вероятно, чем 2).

Говорят, что вероятность выпадения на верхней грани кубика одного числа очков, например 3 равна 1/6.

А события, имеющие одинаковую вероятность называются равновозможными.

Так что такое вероятность события?

От какого слова произошло это понятие?

Задача Даламбера – французский математик (1717-1783). Найти вероятность того, что при подбрасывании двух монет на обеих монетах выпадут цифры.

После выполнения заданий в группах переходим к отчету групп и подведению итогов.

Теперь давайте ответим на вопросы:

1. Какие события вы узнали? И что такое событие?

2. Что такое относительная частота события?

3. Какова вероятность невозможного события?

4. Какова вероятность достоверного события?

5. В каких пределах находится вероятность?

6. Как называются 2 события, имеющие одинаковую вероятность?

Страницы: 1 2 3 4


Похожие статьи:

Анализ учебной литературы по теме «Обыкновенные дроби и проценты»
Изучение обыкновенных дробей и процентов начинается в 5 классе и продолжается на протяжении всего курса алгебры. Начиная с 6 класса, знания о дробях и процентах обобщаются, расширяются и систематизируются. И, следовательно, анализ учебной литературы необходимо проводить за 5-6 классы, чтобы на основе этого анализа построить содержание дидактического пособия. Цель нашего пособия состоит в визуализ ...

Основы теории речевой коммуникации. Изучение становления общения при нормальном речевом развитии ребенка
Жизнь каждого нормального человека буквально пронизана контактами с другими людьми. Потребность в общении – одна из самых важных человеческих потребностей. Общение – это главное условие и основной способ жизни человека. Только в общении и в отношениях с другими людьми человек может почувствовать и понять самого себя, найти свое место в мире. В последнее время широкое распространение получил терми ...

Главные разделы

Copyright © 2023 - All Rights Reserved - www.smarteducator.ru