Бесконечный кластер при протекании

Страница 2

Сайкес и Эссам показали, что порог протекания от узла к узлу на треугольной решетке равен рс = 1/2 (точный результат). Это позволяет получать результаты для внутренних перколяционных кластеров с очень малой погрешностью, производя численные эксперименты на треугольной решетке. Такие результаты, полученные Штауффером [5] и представленные на рис. 1, позволяют получить для фрактальной размерности D оценку, согласующуюся с точным значением D = 91/48. Как показывают результаты численных экспериментов, это значение возникает в задачах с протеканием от узла к узлу на всех двумерных решетках.

Мы заключаем, что при протекании от узла к узлу на двумерных решетках внутренний перколяционный кластер имеет фрактальную структуру, и с увеличением L масса такого кластера возрастает в среднем как

M(L)~ALD, D = 91/48 = 1,895 . .(2)

Среднее берется по многим реализациям внутреннего перколяционного кластера. Амплитуда А есть эффективная амплитуда, вычисленная по значениям амплитуд для кластеров конечных размеров. Степенной закон (2) для массы внутреннего перколяционного кластера выполняется только асимптотически при больших L. При реалистических значениях L это скейлинговое соотношение следует модифицировать, введя в него поправочные члены [5]:

M(L) = ALD + A1L1D +A2L2D+ . ,(3)

где D>D1>D2. Определить поправочные члены с помощью прямых численных экспериментов довольно трудно. Аарони и др. [6] предложили новый метод трансфер-матрицы, упрощающий решение этой задачи. Как правило, в двумерных задачах D1≈D-1.

Заметим, что кривая Мандельброта–Гивена имеет фрактальную размерность D=1,892 и может служить хорошей моделью для перколяционного кластера.

Страницы: 1 2 


Похожие статьи:

Характеристика и сущность изучения развития физических качеств
В процессе физического воспитания детей дошкольного возраста необходимо решать образовательные задачи: формирование двигательных навыков и умений, развитие двигательных и физических качеств, привитие навыков правильной осанки, навыков гигиены, освоение специальных знаний. Благодаря пластичности нервной системы двигательные навыки и умения формируются у детей сравнительно легко. Большинство движен ...

Методические основы изучения тем «Обыкновенные дроби и проценты» в школе
Умение решать задачи на дроби и проценты в значительной мере определяются тем, как понятия дроби и процента предварительно сформированы у учащихся. Усвоение же этих понятий для многих учащихся связано с большими трудностями. Трудности в освоении дробей заключаются, в частности, в том, что ученику надо одновременно осмыслить количество долей (числитель), величину их (знаменатель) и осознать их отн ...

Главные разделы

Copyright © 2020 - All Rights Reserved - www.smarteducator.ru