Измерение геометрических величин (длины, площади, объема) изучается в школьном курсе дважды, на двух различных уровнях.
На первом, экспериментальном, уровне в начальных классах учатся измерять длины отрезков, площади простейших плоских фигур и объёмы простейших пространственных тел.На этом уровне не дается определений длины, площади и объема. Цель состоит в том, чтобы создать у учащихся ясные интуитивные понятия.
Методика изучения геометрической величины на этом уровне достаточно широко освещена в литературе.
Остановимся на некоторых вопросах методики изучения геометрической величины на втором уровне.
‘Школьная’ теория измерения геометрических величин должна строиться с сохранением некоторой общей схемы. Это относится прежде всего к определения понятий: «длины», «площадь», «объем».Повторение одной и той же схемы определения способствует обобщению, формирования такого представления: из аналогии вытекает, что эти понятия относятся к одному более общему понятию, связывающему их. Раскрытие этой связи в процессе обучения способствует более глубокому пониманию и прочности знаний. Каждое из трёх понятий определятся как вещественное число, удовлетворяющее условиям, которые характеризуют общие понятия меры множества.
Например, теория измерения длины отрезков может быть построена по такой схеме:
· Определение длины отрезка как вещественного числа, удовлетворяющего условиям 1)-4) понятия меры;
· Описание процедуры измерения отрезка;
· Установление существования и единственности длины отрезка при данном выборе единицы измерения с использованием аксиомы Архимеда;
· Установления существования отрезка, длина которого при данном выборе единицы измерения ровна любому, наперед заданному положительному числу(с использованием аксиомы Кантора, геометрического эквивалента аксиомы непрерывности).
Разъяснение учащимся старших классов сущности аксиомы Кантора не представляет особых трудностей. Это можно сделать именно в связи с установлением свойства 4.
Случай, когда на перед заданное число рационально, аксиома Кантора применяется, а используется элементарное построение. Если это число иррационально, например х=2,313113111311113…, то поступаем так: введем на прямой систему координат(начало 0, направления единицу измерения).Мы можем построить точки А1 и B1, где А1 = 2,3; B1 = 2,4 – приближения с точностью 0,1. Если существует точка М, то ОА1<OM<OB1, т.е. точка М лежит между А1 и B1, т. е. внутри отрезка А1B1. Мы можем найти A2 = 2,31 и B2 = 2,32 и т.д.
Неограниченно продолжая этот процесс, мы получаем, что если точка М существует, то она лежит внутри каждого из отрезков бесконечной последовательности: A1B1, A2B2,…,AnBn,…, обладающей следующими свойствами:
1. Каждый отрезок, кроме первого, лежит внутри предыдущего.
2. Длины отрезков стремятся к 0(или нет отрезка, лежащего внутри всех отрезков этой последовательности).
Существование точки лежащей внутри всех отрезков этой последовательности, и постулируется аксиомой Кантора.
Приняв аксиому Кантора, мы находим искомую точку М, а следовательно и отрезок ОМ, длина которого равна наперед заданному числу х.
Тема: «Методика изучения площадей фигур и объемов тел в курсе геометрии средней школы».
Темы «Площади фигур» и «Объемы тел» по действующему учебнику «Геометрия 7-11 кл.» под редакцией Погорелова завершают ознакомление учащихся с курсом планиметрии и стереометрии соответственно.
Измерение геометрических величин – одна из основных содержательных линий школьного курса геометрии, которая знакомит учащихся с важными идеями, понятиями и методами метрической геометрии. Измерение геометрических величин связано с идеей аксиоматического метода, теорией действительного числа, методами математического анализа. При изучении данного вопроса учащиеся знакомятся с целым рядом формул, с помощью которых расширяются возможности применения в школьном курсе геометрии аналитического метода. Сочетание различных математических идей и методов – главная особенность в изложении данного учебного материала.
Похожие статьи:
Организация коррекционно-развивающей работы с обучающимися с особыми
образовательными потребностями
По мнению Лисиной и Ломова психическое развитие и формирование личности ребенка возможно только в процессе общения со взрослым, а также по мнению Д.Б. Эльконина с опорой на ведущий вид деятельности ребенка. Так как развитие аномального ребенка происходит по тем же законам, что и развитие нормального ребенка, то при создании определенных условий все дети обладают способностью к развитию (Л.С. Выго ...
Анализ учебников "Русский язык" Рамзаевой
Т.Г., система "Классическая начальная школа"
Одной из важнейших задач школы является достижение высокой грамотности учащихся, основы которой закладываются в начальной школе. Успешное выполнение этой ответственной задачи во многом зависит от того, насколько прочно усвоят учащиеся начальных классов грамматический и орфографический материал. Процесс прочного усвоения знаний является центральной частью процесса обучения. Нами была проведена раб ...