Методика изучения геометрических величин. Теория измерения длин отрезков

Новая педагогика » Измерение геометрических величин в курсе средней школы » Методика изучения геометрических величин. Теория измерения длин отрезков

Страница 5

.

Принципиальным моментом в теории объемов тел является обоснование формулы для учащихся является достаточно трудным и сложным. Структурная сложность доказательства подсказывает, что при его изучении целесообразно воспользоваться приёмами выделения логической структуры доказательства (разбиения доказательства на отдельные шаги, составление логико-структурной схемы доказательства и т.д.). Наличие в доказательстве трудных для понимания рассуждений говорит о целесообразности использования приёмов конкретизации, моделирования и т.д.

Структура доказательства формулы объёма прямоугольного параллелепипеда:

1. устанавливается величина отношения высот двух параллелепипедов с общим основанием;

2. устанавливается величина отношения объёмов выбранных параллелепипедов;

3. сравнение полученных значений отношений;

4. вывод формулы объёма прямоугольного параллелепипеда, применяя доказанное свойство к единичному кубу и параллелепипедам с измерениями: a,1,1; a,b,1; a,b,c.

При решении задач учащиеся иногда “путают” свойства прямого и прямоугольного параллелепипедов, неправильно указывают их диагональное сечение и т.п. Более углубленное изучение этих понятий на этапе их введения обеспечивает применявшаяся ранее методическая схема:

1. проанализировать эмпирический материал;

2. математизировать эмпирический материал – построить определение;

3. составить алгоритм распознавания понятия;

4. включить понятие в систему понятий.

Задача № 5.

Грани параллелепипеда – равные ромбы со стороной а и острым углом 600. Найдите объем параллелепипеда.

.

∆ AA1O: ; Из ∆ AA1K: .

Из ∆ AOK: ; Из ∆ AA1O: ;

Из ∆ KA1O:

* .

Ответ: .

Построение строгой теории измерения геометрической величины в школьном обучении наталкивается на серьезные трудности. Это не означает отказа в школьном курсе от всякой теории измерения геометрических величин. Главное – стремление к строгости не должно быть самоцелью, но не следует скрывать от учащихся вынужденных логических пробелов. Например, площадь многоугольника определяется как сумма площадей треугольников, на которые его можно разбить. Естественно возникает вопрос, получим ли то же самое число, если разобьем данный многоугольник на треугольники другим способом и сложим площади треугольников разбиения. В школе не изучается теорема о независимости суммы площадей треугольников разбиения от способа разбиения, но об её существовании следует сообщить учащимся о существовании такого факта.

Страницы: 1 2 3 4 5 


Похожие статьи:

Понятие и сущность графической иллюстрации. Возникновение и развитие графической иллюстрации в России
Иллюстрация (от лат. illustratio - освещение, наглядное изображение) - вид книжной графики, ее основа. Термин "иллюстрация" можно понимать и в широком, и в узком смысле этого слова. В широком значении это всякое изображение, поясняющее текст. Известно много рисунков, произведений живописи и скульптуры, которые выполнялись на литературные темы, но при этом имели самостоятельное художеств ...

Интеграция научного познания
Потребность в комплексном осмыслении мира, поиске глубоких связей между отдельными явлениями объективной действительности, выявлении взаимоотношений между различными структурными уровнями материи приводит к взаимодействию и взаимопроникновению наук, к интеграции научного познания. Интеграция – важное условие современной науки и развития цивилизации в целом. Так как нынешняя стадия научного мышлен ...

Главные разделы

Copyright © 2025 - All Rights Reserved - www.smarteducator.ru