Методика изучения геометрических величин. Теория измерения длин отрезков

Новая педагогика » Измерение геометрических величин в курсе средней школы » Методика изучения геометрических величин. Теория измерения длин отрезков

Страница 5

.

Принципиальным моментом в теории объемов тел является обоснование формулы для учащихся является достаточно трудным и сложным. Структурная сложность доказательства подсказывает, что при его изучении целесообразно воспользоваться приёмами выделения логической структуры доказательства (разбиения доказательства на отдельные шаги, составление логико-структурной схемы доказательства и т.д.). Наличие в доказательстве трудных для понимания рассуждений говорит о целесообразности использования приёмов конкретизации, моделирования и т.д.

Структура доказательства формулы объёма прямоугольного параллелепипеда:

1. устанавливается величина отношения высот двух параллелепипедов с общим основанием;

2. устанавливается величина отношения объёмов выбранных параллелепипедов;

3. сравнение полученных значений отношений;

4. вывод формулы объёма прямоугольного параллелепипеда, применяя доказанное свойство к единичному кубу и параллелепипедам с измерениями: a,1,1; a,b,1; a,b,c.

При решении задач учащиеся иногда “путают” свойства прямого и прямоугольного параллелепипедов, неправильно указывают их диагональное сечение и т.п. Более углубленное изучение этих понятий на этапе их введения обеспечивает применявшаяся ранее методическая схема:

1. проанализировать эмпирический материал;

2. математизировать эмпирический материал – построить определение;

3. составить алгоритм распознавания понятия;

4. включить понятие в систему понятий.

Задача № 5.

Грани параллелепипеда – равные ромбы со стороной а и острым углом 600. Найдите объем параллелепипеда.

.

∆ AA1O: ; Из ∆ AA1K: .

Из ∆ AOK: ; Из ∆ AA1O: ;

Из ∆ KA1O:

* .

Ответ: .

Построение строгой теории измерения геометрической величины в школьном обучении наталкивается на серьезные трудности. Это не означает отказа в школьном курсе от всякой теории измерения геометрических величин. Главное – стремление к строгости не должно быть самоцелью, но не следует скрывать от учащихся вынужденных логических пробелов. Например, площадь многоугольника определяется как сумма площадей треугольников, на которые его можно разбить. Естественно возникает вопрос, получим ли то же самое число, если разобьем данный многоугольник на треугольники другим способом и сложим площади треугольников разбиения. В школе не изучается теорема о независимости суммы площадей треугольников разбиения от способа разбиения, но об её существовании следует сообщить учащимся о существовании такого факта.

Страницы: 1 2 3 4 5 


Похожие статьи:

Оптимизация познавательной деятельности учащихся на уроках химии через игровые методы
Оптимизация- это процесс выбора наилучшего варианта из множества возможных. Автором теории оптимизации является академик Ю. К. Бабанский. Оптимизацию можно рассматривать как науку и как искусство. Как науку потому, что она требует знания и применения закономерностей, принципов, способов; может быть представлена в виде предписаний, требований, рекомендаций, общих для всех лиц, стремящихся оптимизи ...

Механизм творческого воображения
Творческое воображение является крайне сложным по своему составу процессом. Он включает в себя три основных этапа: 1) накопление материала; 2) переработка накопленного материала (диссоциация и ассоциация впечатлений) ; 3) комбинация отдельных образов, приведение их в систему, построение сложной картины. В самом начале этого процесса стоят всегда восприятия внешние и внутренние, составляющие его о ...

Главные разделы

Copyright © 2025 - All Rights Reserved - www.smarteducator.ru