Методика изучения геометрических величин. Теория измерения длин отрезков

Новая педагогика » Измерение геометрических величин в курсе средней школы » Методика изучения геометрических величин. Теория измерения длин отрезков

Страница 4

Задача 2.

Докажите, что стороны треугольника обратно пропорциональны его высотам, то есть:

. Так как получаем:

что требовалось доказать.

Задача 3.

Докажите, что среди всех параллелограммов с данными диагоналями наибольшую площадь имеет ромб.

M B C

A K D

1-ый способ

.

Если - ромб, то , то есть . Наибольшее значение произведения зависит от наибольшего значения , которое достигается при , если , то . Следовательно, площадь ромба наибольшая среди всех площадей параллелограммов с данными диагоналями.

2-ой способ

.

Составим функцию, выражающую площадь параллелограмма:

при .

Так как - наименьший угол, образуемый диагоналями при пересечении, то и будет точкой максимума, следовательно: ; и этот параллелограмм – ромб.

Задача 4.

Прямая, перпендикулярная высоте треугольника, делит его площадь пополам. Найдите расстояние от этой прямой до вершины треугольника, из которой проведена высота, если она равна .

B

A D C

- трапеция, то есть подобен

Так как для подобных треугольников их площади относятся как квадраты соответствующих линейных размеров, то:

Существуют различные методические подходы к изучению вопросов измерения геометрических величин в курсе стереометрии.

Для вывода формулы объема, могут быть использованы:

1. Принцип Кавальери: объемы (или площади) двух тел (фигур) равны, если равны между собой площади (длины) соответствующих сечений, проведенных параллельно некоторой данной плоскости (прямой).

2. Формула Симпсона:

.

Пусть промежуток [a,b] разбит на n частейных промежутков [xi, xi+1] длины , при этом n считается чётным числом, и для вычисления интеграла по промежутку [x2k, x2k+2] используется приведенная формула:

Страницы: 1 2 3 4 5


Похожие статьи:

Методика изучения геометрических величин. Теория измерения длин отрезков
Измерение геометрических величин (длины, площади, объема) изучается в школьном курсе дважды, на двух различных уровнях. На первом, экспериментальном, уровне в начальных классах учатся измерять длины отрезков, площади простейших плоских фигур и объёмы простейших пространственных тел.На этом уровне не дается определений длины, площади и объема. Цель состоит в том, чтобы создать у учащихся ясные инт ...

Когнитивно-культурный полиморфизм образовательных систем
Пришло время, и нам уже кажутся обыденными явления, втягивающие людей вместе с окружающей их жизнью в движение, которое стремительно приближает их к "обществу знаний". Этот процесс приводит к акцентированию когнитивного компонента в обучении, что само по себе ожидаемо. Однако зачастую в нем менее всего хотят видеть обращение к тем психическим составляющим индивида, которые способны усил ...

Главные разделы

Copyright © 2026 - All Rights Reserved - www.smarteducator.ru