Закрепить основное свойство предлагается примерами:
№761. Объясните с помощью рисунка, почему
=
=
=
.
![]()
При вычислениях с дробями допускается сокращение дроби на любой общий делитель ее числителя и знаменателя (необязательно наибольший), а также приведение дробей к любому общему знаменателю (необязательно к наименьшему). Но в этом и в другом случае разъясняется, когда вычисления будут наиболее рациональными.
Формирование понятия дроби сопровождается обучением решению простейших задач на нахождение части числа и числа по его части. В пункте 4.3 «Нахождение части числа и числа по его части» соответственно рассматриваются только две задачи:
Задача 1. Было 1000 рублей,
этой сумы истратили. Сколько денег истратили?
Решение. Будем считать, что 1000 р. Состоит из пяти пятых долей. Тогда на одну пятую приходится 1000 : 5 = 200 р., а на две пятых – в два раза больше: 200 · 2 = 400 р. Эти два действия можно объединить: 1000 : 5 · 2 = 400 р.
Чтобы найти
числа 1000, можно это число разделить на знаменатель дроби и результат умножить на числитель.
Задача 2. Потратили 600 рублей, что составило
имевшейся суммы денег. Сколько было денег?
Решение. Будем считать, что искомое число состоит из трех третьих долей. По условию его две трети равны 600. Тогда на одну треть приходится 600 : 2 = 300 р., а на три трети 300 · 3 = 900 р. Эти два действия можно объединить: 600 : 2 · 3 = 900 р.
Чтобы найти число,
которого равны 600, можно 600 разделить на числитель дроби и результат умножить на знаменатель.
После приведения дробей к общему знаменателю появляется потребность в сравнении дробей. Сравнение осуществляется при помощи чертежа.
Из двух дробей с общим знаменателем больше та дробь, у которой числитель больше. Вводятся обозначения: если p > r, то
>
.
Здесь же авторы вводят определение правильной и неправильной дробей. Доказывается следующее утверждение: если первая дробь меньше второй, а вторая дробь меньше третьей, то первая дробь меньше третьей.
После чего приводятся примеры для решения.
№807. Сравните правильную и неправильную дроби:
а) с 1; б) между собой.
№808. С помощью рисунка объясните, почему
>
,
<
.
Смешанная дробь рассматривается как другая запись обыкновенной неправильной дроби.
Заключительный этап изучения темы – изображение дробей точками на координатной прямой.
В данной теме решаются задачи на умножение и деление дробей, а также обращается особое внимание на то, что рассмотренные ранее задачи на дроби можно решать с помощью умножения и деления на дробь.
Похожие статьи:
Характеристика различных приёмов развития творческих
способностей на уроках чтения
Д.Б. Эльконин в своём исследовании методов развития творческого воображения выяснил, в какой мере в данной деятельности младший школьник следует логике реальной жизни и на сколько они стойки в осуществлении этой реалистической тенденции. Он выдвинул предположение, что само возникновение образов фантазии вызывается столкновением реалистической идеи с ограниченными средствами её воплощения - это со ...
Особенности адаптации детей с нарушениями интеллекта к
социуму в рамках учебно-воспитательного процесса общеобразовательного
учреждения
В соответствии с международной классификацией (МКБ-9) выделяют 3 степени умственной отсталости: 1. дебильность — относительно легкая, неглубокая умственная отсталость; 2. имбецильность — глубокая умственная отсталость; 3. идиотия — наиболее тяжелая, глубокая умственная отсталость. По современной международной классификации (МКБ-10) на основе психометрических исследований умственную отсталость под ...