Ответ выглядит так:
.
2. Разложение симметрических многочленов на множители методом неопределенных коэффициентов
Если при выражении симметрического многочлена
через
и
получается многочлен 2-й степени относительно
, который корней не имеет, то может помочь другой способ. Многочлен от x и y 4-й степени представляется в виде произведения двух многочленов второй степени, имеющих специальный вид:
, где А, В и С – какие-то пока неизвестные (или «неопределенные») коэффициенты. Как найти эти коэффициенты, мы узнаем из примера 2:
Пример 2. Разложить на множители многочлен
Решение: Мы будем искать разложение в виде
=
(*)
При нахождении коэффициентов А, В и С заметим, что равенство (*) должно представлять собой тождество, то есть выполняться при любых значениях переменных x и y. Подставляя в соотношение (*) различные значения x и y, мы будем получать уравнения на коэффициенты А, В и С, после чего сможем найти их.
Положим x = y = 1, тогда (*) примет вид 16 = (А + В + С)2, откудаА + В + С =
4. Поскольку при значении 4 и -4 правая часть равенства (*) не меняется, для простоты возьмем А + В + С = 4.
Полагая x = 1, y = -1, получим А - В + С =
2,и при x = 0, y = 1, получается АС = 2.
Мы пришли к системе
.Решая ее, находим А = 1, В = 1, С = 2 (или А = 2, В = 1, С = 1).И в одном, и в другом случае ответ таков:
Это равенство получено в предположении, что искомое разложение (*) существует. Раскрыв скобки в правой части, можно убедиться в справедливости полученного равенства.
3. Домашнее задание
Разложить на множители следующие многочлены:
1.
2.
3.
Ответы:
1.
2.
3.
Занятие 9
Цель: Научить детей решать некоторые задачи, не вошедшие в предыдущие занятия.
План: 1. Разбор некоторых задач. 2. Упражнения.
1. Различные задачи
Симметрические многочлены можно применять и для решения задач многих других видов, отличающихся от рассмотренных ранее.
Пример 1. Исключить x и y из уравнений
Эту задачу следует понимать следующим образом: так как для двух неизвестных x и y мы имеем три уравнения, то эта система имеет решения не при любых значениях a, b и c. Требуется найти соотношение между a, b и c, при котором данная система разрешима.
Решение: воспользуемся тем, что левые части уравнения симметрично зависят от x и y. Выразим их через элементарные симметрические многочлены:
Из первых двух уравнений получаем:
,
, и в силу третьего уравнения
, или
. Это и есть результат исключения x и y из исходной системы уравнений.
Похожие статьи:
Диагностика уровня
развития физических качеств и физической подготовленности старших дошкольников
на контрольном этапе исследования
Для выявления эффективности развития физических качеств дошкольников обеих групп после двух месячного общеподготовительного периода проводится контрольное тестирование, с помощью которого предполагается выявить уровень развития физических качеств дошкольников в контрольной и экспериментальной Таблица 6 – Сравнительные показатели развития физических качеств дошкольников Группы экспериментальная ко ...
Основы научных методов и характер научных революций
Что такое наука? Существуют определения типа: "наука есть систематизированное знание" или "наука представляет собой иерархически организованную систему знаний", но такие определения не достаточны. Не всякое систематизированное знание есть наука. Ведь этому определению удовлетворяет любое систематизированное учение, не имеющее ничего общего с наукой. Можно предположить и такое ...