Методические разработки занятий факультативного курса

Страница 9

Пример 1. Доказать, что если a и b – действительные числа, удовлетворяющие условию a + b > c, то справедливы неравенства: , ,

Для доказательства введем элементарные симметрические многочлены, . Имеем: Так как z 0, а по условию задачи , то , то есть . Применяя к полученному неравенству те же рассуждения, находим:

Пример 2. Доказать, что если a и b – действительные числа, удовлетворяющие условию a + b > 1, то .

Доказываемое неравенство является частным случаем неравенства, рассмотренного в предыдущем примере. Там мы его доказали, дважды применив неравенство . Но можно доказать неравенство и непосредственно: = = (поскольку z 0).Так как по условию задачи , то неравенство доказано.

Задания 1. Доказать, что при любых действительных a и b справедливо неравенство .2. Доказать, что при любых действительных a и b справедливо неравенство .3. Доказать, что при любых неотрицательных a и b справедливо неравенство

Решение

1.

2.

3. ,так как , то по теореме 2 и , и неравенство доказано.

3. Домашнее задание

1. Доказать, что при любых действительных a и b справедливо неравенство .2. Доказать, что при любых неотрицательных a и b справедливо неравенство 3. Доказать, что при любых положительных числах x и y справедливо неравенство

Решения

1. 2. - по теореме 2.3. Данное неравенство можно переписать в виде , то есть , или , которое выполняется прямо по теореме 2.

Страницы: 4 5 6 7 8 9 10 11 12 13


Похожие статьи:

Психологические особенности глухих детей и роль творчества в развитии познавательной сферы
Глухие дети, как правило, реагируют преимущественно на громкие звуки (гул самолета, гудок поезда, звучание некоторых музыкальных инструментов, голос повышенной громкости на разном расстоянии). Среди глухих детей с нормальным интеллектом почти не встречаются такие, которые не реагируют хотя бы на один из слуховых раздражителей. Ответные реакции детей характеризуются в младшем возрасте большим разн ...

Воспитание подростков с девиантным поведением как социально-педагогическая проблема
Создавая необходимые условия для развития личности в рамках учебно-воспитательного процесса, педагогам нередко приходится взаимодействовать с детьми и подростками, имеющими отклонения в поведении различной этиологии. В научной литературе данную категорию учащихся, принято называть: трудными, неблагополучными, асоциальными, трудновоспитуемыми, с девиантным, отклоняющимся поведением, Параметры откл ...

Главные разделы

Copyright © 2025 - All Rights Reserved - www.smarteducator.ru