Методические разработки занятий факультативного курса

Страница 9

Пример 1. Доказать, что если a и b – действительные числа, удовлетворяющие условию a + b > c, то справедливы неравенства: , ,

Для доказательства введем элементарные симметрические многочлены, . Имеем: Так как z 0, а по условию задачи , то , то есть . Применяя к полученному неравенству те же рассуждения, находим:

Пример 2. Доказать, что если a и b – действительные числа, удовлетворяющие условию a + b > 1, то .

Доказываемое неравенство является частным случаем неравенства, рассмотренного в предыдущем примере. Там мы его доказали, дважды применив неравенство . Но можно доказать неравенство и непосредственно: = = (поскольку z 0).Так как по условию задачи , то неравенство доказано.

Задания 1. Доказать, что при любых действительных a и b справедливо неравенство .2. Доказать, что при любых действительных a и b справедливо неравенство .3. Доказать, что при любых неотрицательных a и b справедливо неравенство

Решение

1.

2.

3. ,так как , то по теореме 2 и , и неравенство доказано.

3. Домашнее задание

1. Доказать, что при любых действительных a и b справедливо неравенство .2. Доказать, что при любых неотрицательных a и b справедливо неравенство 3. Доказать, что при любых положительных числах x и y справедливо неравенство

Решения

1. 2. - по теореме 2.3. Данное неравенство можно переписать в виде , то есть , или , которое выполняется прямо по теореме 2.

Страницы: 4 5 6 7 8 9 10 11 12 13


Похожие статьи:

Диагностическая методика творческого воображения младшего школьника
Цель: выявление уровня развития творческого воображения у младшего школьника. Приготовьте несколько геометрических фигур разного цвета и формы из картона. Фигуры должны быть простые и сложные, правильной и неправильной формы (круг, треугольник, звездочка, прямоугольник, овал и т.п.). Они также могут быть разными по размеру. Предложите ребенку такое задание: вы будете читать ему сказку, а ребенок ...

Методические основы изучения тем «Обыкновенные дроби и проценты» в школе
Умение решать задачи на дроби и проценты в значительной мере определяются тем, как понятия дроби и процента предварительно сформированы у учащихся. Усвоение же этих понятий для многих учащихся связано с большими трудностями. Трудности в освоении дробей заключаются, в частности, в том, что ученику надо одновременно осмыслить количество долей (числитель), величину их (знаменатель) и осознать их отн ...

Главные разделы

Copyright © 2025 - All Rights Reserved - www.smarteducator.ru