Методические разработки занятий факультативного курса

Страница 2

План занятия

1. Теорема единственности.

2. Теорема Безу.

3. Деление «уголком» многочлена на многочлен.

Теорема единственности

Разбор домашнего задания.

На прошлом занятии мы разобрали основную теорему о симметрических многочленах. В ее доказательстве содержится прием, позволяющий выразить симметрический многочлен через элементарные симметрические многочлены. Возникает вопрос: а можно ли сделать это другим способом? Ответ дает следующая

Теорема единственности: Если многочлены φ(σ1, σ2 ) и ψ(σ1, σ2) при подстановке σ1 = x + y , σ2 = xy превращаются в один и тот же симметрический многочлен, то они совпадают.

Доказательство приведено в приложении .

Главное, что надо усвоить: каким бы путем мы не выражали симметрические многочлены через σ1 и σ2 , всегда будет один и тот же результат.

2. Теорема безу

Для решения практических задач в дальнейшем нам понадобится

Теорема безу: Остаток от деления многочлена f(x) = a0xn + … + anна x – a равен значению этого многочлена при x = a, то есть равен числуа0аn + … + аn .

Доказательство приведено в приложении.

Нам важна не сама теорема, а ее следствие: Если число a является корнем многочлена f(x), то этот многочлен без остатка делится на x – a.

3. Деление многочлена на многочлен «уголком»

Следствие из теоремы Безу применяется для решения уравнений высоких степеней.

Пример 1: решим уравнение 2x3 + 3x2 – 3x – 2 = 0.Решать уравнения 3-ей степени мы не умеем. Но часто один корень можно угадать, и в данном случае корень x = 1. По следствию из теоремы Безу многочлен 2x3 + 3x2 – 3x – 2 делится на x – 1 без остатка. Давайте произведем деление, причем делать мы будем это столбиком:

2 x3 + 3 x2 – 3x – 2 ‌‌│ x – 1

2 x3 - 2x2 │ 2x2 + 5x + 2

5x2 – 3x - 2

5x2 - 5x

2x - 2

2x - 2

0

Итак, исходное уравнение можно записать в виде:

(x - 1)( 2x2 + 5x + 2) = 0

Корни найти теперь не сложно:

x = 1, x = -2, x = -1/2.

Умение делить многочлен на многочлен применяется не только для решения уравнений 3-ей степени, но и для решения множества других задач алгебры. Давайте потренируем этот навык.

Пример 2: разделить -2x5 + x +1 на x – 1.

Чтобы не наделать ошибок, многочлен -2x5 + x +1 надо записать в каноническом виде, то есть строго по убыванию степеней, а вместо отсутствующих степеней записывать нули.-2x5 + 0x4 + 0x3 + 0x2 + x + 1 │ x – 1

-2x5 + 2x4 │ -2x4 - 2x3 -2x2 -2x -1

-2x4 + 0x3 + 0x2 + x + 1

-2x4 + 2x3

-2x3 + 0x2 + x + 1

-2x3 + 2x2

-2x2 + x + 1

-2x2 + 2x

-x + 1

-x + 1

0.Итак, -2x5 + x +1 = (-2x4 - 2x3 -2x2 -2x -1)(x - 1).

Задание:1. Разделить -3x3 + 12x2 - 9x на x2 - 4x + 32. Разделить -2x3 + 6x + 4 на -x2 + x + 23. Разделить x4 + 6x3 - 3x2 – x + 1 на x2 – 2x +34. Придумать самим 2 примера на деление многочленов, причем делимый многочлен брать 5-й и выше степеней.

Ответы: 1. -3x 2. 2x + 2 3. x2 + 8x +10

Занятие 3

Цель: Научить детей решать некоторые системы уравнений с помощью симметрических многочленов.

План занятия:1. Повторение: симметрические многочлены, элементарные симметрические многочлены, степенные суммы, теоремы Безу и основную теорему (без доказательств).2. Решение систем уравнений.3. Домашнее задание.

1. Повторение

Мы переходим к главной цели наших занятий – решению алгебраических примеров и задач с помощью симметрических многочленов. Но сначала необходимо повторить основные понятия.- Что называют симметрическими многочленами?- Что такое элементарные симметрические многочлены?- Вспомнить и записать s3, s4, s5.- Сформулировать теоремы Безу и основную теорему.

Страницы: 1 2 3 4 5 6 7


Похожие статьи:

Традиции и проблемы семейного воспитания в Китае
Современный Китай – это феноменальное государство, которое обладает невероятной индустриальной мощью и огромным экономическим потенциалом. Несмотря на то, что Китай по сей день является развивающейся страной, её развитие происходит весьма стремительными темпами. За счёт многомиллионного китайского населения ВВП государства находится на втором месте после США. Ещё бы – ведь более 50% продаваемых в ...

Особенности внимания заикающихся дошкольников
В последнее время логопеды все больше убеждаются, что при устранении заикания невозможно обойтись без использования психологических методов воздействия. Почему же успешное логопедическое воздействие невозможно без параллельного проведения коррекционной работы по развитию психических процессов? Дело в том, что возникшие у ребенка речевые запинки, спотыкания (несудорожного или судорожного характера ...

Главные разделы

Copyright © 2025 - All Rights Reserved - www.smarteducator.ru